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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2595 

DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED 

VELOCITY DISTRIBUTIONS ALONG THE CHANNEL WALLS 

II - SOLUTION BY GREEN'S FUNCTION 

By John D. Stanitz 

SUMMARY 

Methods of solution by Green's function are developed for the. design 
of two-dimensional uribranched channels with prescribed velocities as a 
function of are length along the channel walls. The methods apply to 
incompressible and linearized compressible, nonviscous' irrotatiorial flow. 
One numerical example is presented for an accelerating elbow with 
linearized compressible flow. The elbow shape obtained from the solution 
by Green's function is the same as that obtained from a solution by 
relaxation methods for the same prescribed conditions. The time,required 
for the calculations is considerably less for solutions by Green's     * 
function. ' 

INTRODUCTION 

,  In this report a general method of design is developed for two- 
dimensional, compressible or incompressible, nonviscous irrotational 
flow in uribranched channels with prescribed velocities as a function of 
arc]length along the channel walls. The design of channels with pre- 
scribed velocities is important because:  (1) boundary-layer separation 
losses can be avoided by prescribed velocities that do not decelerate 
rapidly .enoi^gh to cause separation, (2) shock losses in compressible 
flow and cavitation in incompressible flow can be avoided by prescribed 
velocities that do not exceed certain maximum values dictated by these 
phenomena, and (3) for compressible flow the desired flow rate can be 
assured by prescribed velocities that do not result in "choke flow" 
conditions. 

In Part I of this report (reference l).solutionsi were obtained by 
relaxation methods. This method of solution results in complete infor- 
mation concerning, the distribution of; flow conditions throughout the 
channel and can be used to obtain solutions for incompressible flow and 

'J-*-"j"-'-'—       • -  ,.-■.-.       i. ..•.:....  
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for two types of compressible flow: the general type with arbitrary 
value for the ratio of specific heats r (1-4, for example) and the 
linearized type with r equal to -1.0. 

In the present report solutions are obtained by Green's function. 
This method of solution is limited to incompressible and linearized < 
(r = -1.0)  compressible flow, but the method is more rapid than relax-        -, 
ation methods, provided information within the channel is not required. 
The method of solution is developed for the channel walls only although 
the method can be extended to determine the shape of streamlines within 
the channel. 

The design method reported herein was developed at the NACA Lewis 
laboratory during 1950 and is part of a doctoral thesis conducted with 
the advice of Professor Ascher H. Shapiro of the Massachusetts Institute 

of Technology. '.-.•' 

METHOD OF SOLUTION 

The design method is developed for two-dimensional channels with ^ 
prescribed velocities along the channel walls.  The prescribed velocity 
is arbitrary except that stagnation points (zero velocity) cannot be 
prescribed. This exception limits the design method to unbranched 
channels. In the present report the method of solution is by Green's 
function in conjunction with a formula derived (elsewhere) from Green s 

theorem. 

Preliminary Considerations 

Assumptions. - The fluid is assumed to be nonviscous and either 
compressible or incompressible. If the fluid is compressible, the 
ratio of specific heats y\ is assumed to be -1.0, so that the differ- 
ential equations describing the flow are linear. The flow is assumed to 
be two-dimensional and irrotational. 

Physical plane. - The flow field of the two-dimensional channel is 
considered to lie in the physical xy-plane where x and y are 
Cartesian coordinates expressed as ratios of a characteristic length 
equal to the constant channel width downstream at infinity.  (All symbols 
are defined in appendix A.) i 

At each point in the channel the velocity vector -(fig. 1) has a 
magnitude Q and a direction 0 where Q is the fluid velocity 
expressed as the ratio of a characteristic velocity equal to the constant     ■„ 
channel velocity downstream at infinity. For compressible flow, the 
velocity Q is related to the velocity q by 
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~a 

q = Qqd (i) 

■jt. infinity 

where q is the velocity expressed as a ratio of the stagnation speed 
of sound and the subscript d refers to conditions downstream at 

Stream function ¥. - If the condition of continuity is satisfied, 
a stream function ijr can he defined such that for incompressible flow 

dW = f di|r (2a) 2 

where,  from Part I, 

di|r = Q dn (2b) 

where n is distance in the xy-plane measured normal to the streamline 
and expressed as a ratio of the channel width downstream at infinity. 
For linearized compressible flow (7- = -1.0) 

where, from Part I, 

di|f* = p*q* dn (2d) 

and where Ai|f* is the value of \|r * along the left channel wall when 
faced in the direction of flow if the value of i|r* along the right wall 
is arbitrarily equal to zero. The value of Ai|r* is obtained by inte- 
grating equation (2d) across the channel at a position far downstream 
where flow conditions are uniform 

At* = pd*qd* (2e) 

From Part I, p* is related to the density p, expressed as the ratio 
of a characteristic density equal to the stagnation density, by 

.P.* = klP (2f) 
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where 

i Mfs^. (2g) 
1   Pa I     /n \2 «» 

Mi- 

in which 

(2h) 

and 

(2i) 

where the subscripts a and b refer to quantities related to any two 
selected values of velocity {q& and q^, respectively) for which veloc- 

ities the densities given by equations (2h)-and (2i) are equal to the 
densities p given by equations (2f) and (2g). Also, from Part I, 
q* is related to q by 

q* = ^q (2j) 

where 

(2k) 

For each prescribed velocity distribution along the channel walls there 
are an infinite number of linearized compressible flow solutions, 
depending on the selected values of q& and qb in equations (2g) and 

(2k). However, for values of qa and qb within the range of q pre- 
scribed along the channel walls (and therefore everywhere in the channel), 
the solutions, that is, channel shapes, probably differ only in small 
detail (Part I). 

■MMüMMHMHHM 
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The values of qa and q^ might, for example, be selected,to equal 
the maximum and minimum values of q (which'values of q must occur on 
the channel walls and are therefore known). Also, the values of qa 
and q-jj might "be selected to equal the upstream and downstream veloc- 

\3      . ities qu and q^. In this case the upstream and downstream channel 
§■■'.'.'':     widths would then satisfy continuity for a gas with the correct 

(arbitrary) value of y    (1.4, for example). If the upstream and down- 
stream velocities are equal, their value and the value of some other 

\ velocity (the maximum or minimum velocity, for example) can be selected 
for qa and q^ or, if desired, q^    can be equal to q^ so that 

and 

and, from Part I, 

*a " % - *■ 

Pa - %  = p 

1 X "  2  * 

^-pJrr^i    ' {2l) 

and 

Equations (2a) and (2c) define the stream function ¥ for incom- 
pressible and linearized compressible flow, respectively. For both 
types of flow ¥ varies from zero along the right side of the channel, 

when faced in the direction of flow, to ^ along the left side of the 

channel. 

Velocity potential  $. - If the condition of irrotational fluid 
motion is satisfied, a velocity potential $ can be defined such that 
for incompressible flow 

d$= I dcp (3a) 
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where, from Part I, 

dcp = Q ds (3b) 

where s is distance in the xy-plane measured along the streamlines 
and expressed as the ratio of channel width downstream at infinity. 
For linearized compressible flow 

o 
to 

(3c) 

where,  from Part I, 

dcp*= q* ds (3d) 

Equations (3a) and (3c) define the velocity potential $ for incom- 
pressible and linearized compressible flow, respectively. 

Outline of design method. 
That is 

Solutions for two-dimensional flow are 
, the solutions depend on known con- boundary- value problems, 

ditions imposed along the boundaries of the problem.  In the inverse 
problem of channel design the geometry of the channel walls in the 
physical xy-plane is unknown.  This unknown geometry apparently precludes 
the possibility of solving the problem in the physical plane and neces- 
sitates the use of some new set of coordinates, that is, a transformed 
plane, in which to solve the problem. These new coordinates must be 
such that the geometric boundaries along which the velocities are pre- 
scribed are known in the transformed plane.- It is also necessary, for 
the method of solution employed in this report, that the coordinate 
system of the transformed plane be orthogonal in the physical plane. 
A set of coordinates that satisfies these requirements is provided by 
$ and ¥, which are orthogonal in the physical xy-plane and for which 
the geometric boundaries are known constant values of ¥ (equal to 0 

-) in the transformed O^-plane.  The distribution of velocity as 

$ along these boundaries of constant  ¥ is known because, 
and 

a function of 
if 

Q = Q(s) 

or 

q =  q(s) 

is prescribed,   equation  (3a)   or  (3c)   integrates to give 

$= $(s) 
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from which 

Q = Q(*) 

or 

q = q($) 

The technique of the proposed channel-design method is therefore to 
solve for the physical x^y-coordinates of the channel walls in the 
transformed $Tjr-plane where the prescribed boundary conditions for the 
two-dimensional flow problem are known. 

Channel wall coordinates. - From Part I the distribution of channel 
wall coordinates x and y along the boundaries of constant ¥ equal 

to 0 and ^ in the transformed $ljf-plane is given by 

(4a) 

and 

y = \ A** ^ß- dS> (4b) 

for linearized compressible flow, and for incompressible flow 

cos 0 d$ (5a) 

and 

2 sin 0 d$ (5b) 

where the constants of integration are selected to give known (specified) 
values of x. or y at one value of $ along each boundary. Because 
q* and Q are known functions of $ from the prescribed velocity as a 
function of arc length along the channel walls, the shape of the'channel 
walls in the physical xy-plane is given by equation (4) or (5) if 0 is 
determined as a function of $ along the channel walls (^ equals 0 and 

=■).  In this report the solution for 0 as a function of $ along the 
channel walls in the <£>¥ -plane is obtained by Green's function. 
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Solution by Green's Function 

Continuity. - From Part I.the continuity equation becomes in the 
transformed ^Üf-plane 

5 lpge 
V  00  n 

 5$  + 31 = ° (6a) 

where for incompressible flow 

V = Q 

and for linearized compressible flow 

(6b) 

V = 
1 + Jl +  q*2 

(6c) 

Irrotational motion. - From Part I the equation for irrotational 
motion becomes in the transformed $F-plane 

a iogQ v be 

Integral equation for 0($o,¥o). - From equations (6a} and (7) 

a28    a2e 

ÖO2  Ö«2 
= 0 (8) 

so that from appendix B the value of 0 at a point ($0,¥Q) within, 

or on, the channel walls in the transformed $f-plane is given by the 
integral equation 

e@0,vo) 
cs ioge v 

—W 
2 

ö log V1 

e 
car- d's» (9) 

■■■■■■■ 
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where the subscripts 0 and £ refer to the channel wall boundaries 
Li 

along which ¥ is 0 and £, respectively, and G is the Green's 

function of the second kind for the channel, which is an infinite strip 

of width ^ extending in the ^-direction to ±». 

Green's function G. - The Green's function of the second kind G 
for the infinite channel in the $¥-plane is given along the channel 

wall boundaries (¥ equals 0 and —) by (appendix C) 

J0 or £ = -loge cosh2 ($-<2>0) - 
2        L 

cos^ (¥-¥0) (10) 

where ($,¥)  is any point on the channel wall boundary and ($ , ¥) is 

the point in the channel or on the boundary at which 0 is- to be deter- 
mined. 

Numerical integration for 0($o,¥o). - From equations (9) and (10) 

2« 0(*o,¥ ) = 
ö loge V 

w log. cosh (*"»0) sin2 ¥ d{$-$o) 

ö log V 

 Z¥~ log. cosh ($-$ ) cos ¥ d($-$Q) (11) 

in which the independent variable of integration has been changed from 
d$ to d($-$0) so that the origin, for purposes of integration, lies 
at $0 rather than $ = 0. If for small changes in ($-$0), that is 

for small A$, the term 
ö log„ V 

W may be considered constant and equal 
to its average value over the interval A$, then 

ö loge V 

—5$— 
A loge V 

and equation (11) becomes 
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00 

2*e(*o,Tg- 
($-$0)=-c° 

[A loge V ($-$0)+A$ 

'(*-*o) 

log. cosh2($-$0)  -  sin2 ll d(*-*)>     - 

Ä     (A logo V   f(*-*0)HA* 

■($-$£)=-«* 
"AT" log6 

(*-4L) 
cosh2($-$0)  -  cos2 f0 d(*-«0) 

(12) 

where the summation sign is understood to mean that the quantity within 
the braces is summed over the entire range of ($-<f>0) between ±=°. 

Equation (12) determines 9 at any point in the flow field 
(channel).  For a point  ($ ,¥ )  on the channel walls ¥Q is equal 

to 0 or £ and the integrands in equation (12) become 
2 

■ 2 log' cosh |($-$0)| 

or 

2 loge sinh |($-*0)| 

so that equation (12) becomes 

a 
to 

*e<*o'*o) = ;. S 
(*-*0)=-» 

/A loge V 

,  A$ 
AI 

2 

/A loge V 

A$ 
AI (13a) 

where 

AI = I ($-<%)+A$ " I(0-$o) 
(13b) 

^^rfMi^MHM^ 
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In = a if VQ = 0 

I£=ß if T0-| 

2 

I0= a if T0-| 

I0 = ß if ¥0 = 0 

*\ 

(13c) 

J 

where 

l(*-*J 
a = loge cosh (($-%)! d|(4-*0)| (13d) 

1($-$o)| 
ß = loge sinh|($-$o)| d|(*-*0)J (I3e) 

where the + signs apply for positive values of ($-$0) and the - signs 
apply for negative values of ($-<I>0) • Methods of evaluating a and ß 
are given in appendix D and tabulated values are given for a wide range 
of  l($-$o)l  in table I. Equation (13a) determines 9(^0,%)     at any 
point on the channel wall boundaries. Thus from equations (4a) and (4b) 
or (5a) and (5b) the coordinates for the channel wall shape in the 
physical xy-plane can be determined. ' 

NUMERICAL PROCEDURE 

The numerical procedure for the channel design solution by Green's 
function is the same, except for minor details, for incompressible and 
linearized compressible flow. The. stepwise procedure is outlined as 
follows: 

(1) For incompressible flow the.velocity Q and for linearized 
compressible flow the velocity q, or which is the same thing the 
velocity Q and the constant downstream velocity q^, are specified 
as/functions of arc length along'the channel walls 

Q = Q(s) (14a) 
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or 

q= q(s) (14b) 

where s is arbitrarily equal to 0 at that point along one channel 
wall where the velocity first begins to vary. 

(2) Compute V as a function of s from equations (6b) and (14a) 
for incompressible flow or from equations (2j), (2k), (6c), and (14b) 
for linearized compressible flow. 

V= V(s) (15) 

(3) Compute $ as a function of s from equations (3a) and (3b) 
for incompressible flow or from equations (2e), (3c), (3d), and (14b) 
for linearized compressible flow. In equation (2e)  pd* is obtained 

from equations  (2f)   to  (2i).    For arbitrary distributions of    Q    or    q 
equation (3a)   or  (3c)   is  integrated numerically using,  for example, 
Simpson's one-third rule.     Thus 

$= ${s) (16) 

(4) From equations (15) and (16) V and $ are known functions of 

s so that * 

V = V($) (17) 

Thus V is a known function of <P along the channel wall boundaries in 
the transformed $¥-plane. 

(5) If the prescribed velocity distribution along one wall is , 
different from that along the other, the channel will,. in general, turn 
the flow. This turning angle A0 is given by equation (E5) in 
appendix E. ' If the turning angle is-unsatisfactory a new distribution 
of velocity as a function of s  (equations (14a) and (14b)) is pre- 
scribed and steps (1) to (5) repeated until the desired value of A0 is 
obtained. Equation (E5) is integrated numerically using Simpson's one- 
third rule, for example; and equation (17). 

(6) The channel wall boundaries are straight parallel lines of 

constant ¥ equal to 0 and £, and extending to '±?>  in the 

^-direction. Along these boundaries of constant ¥ a series of equally 
spaced points are located at each of which the flow direction 0' and the 
physical x,y-coordinates will be determined by numerical integration. 
In order to use the tables of a and ' ß presented in this report, the 
point spacing A<2> must be an even multiple of A/24.  Thus the smallest 
point spacing it/24 is equal to l/l2 of the channel width (*/2). For 

o 
to 
(M 
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a particular prescribed velocity distribution along the channel walls 
the accuracy of the solution increases, and so does the amount of com- 
puting, as the point spacing is reduced. The error for a given point 
spacing- depends on the prescribed velocity distribution and its order 
of magnitude is given by the leading term of the error series of the 
formula used for numerical integration (table VIII, reference 2, for 
example). For the numerical example presented in this report the point 
spacing A$ was */l2. From equation (17) 

A lQge 
V  llQge VWd> - (lQge 

Yk 
A$ A$ (18) 

where the subscripts $ and $4A$ refer to adjacent points along the 
channel boundaries. 

(7) The value of 0 at each point ($0,\)    on the channel wall 
A log V 

boundaries is obtained from equation (13a) in which  *%       is given 

by equation (18) and AI is given by equations (13b), (13c), and table I. 
Note that in equation (13a) the origin has been moved to $  by changing 

A loge V        ' 
from $ to (<S>- <^) . Thus the value of  ■£$  for a given value of 
($-$0) varies with $Q. " 

(8) The physical x,y-coordinates at each point on the channel wall 
boundaries are obtained by the numerical integration of equations (5a) 
and (5b) for incompressible flow, or equations (4a) and (4b) for linear- 
ized compressible flow where Ai|r* is given by equation (2e) . The con- 
stants of integration in equations (4).and (5) are selected to give known 
values of x and y at upstream or downstream positions where flow 
conditions can be considered uniform. 

NUMERICAL EXAMPLE 

The channel design method of this report has been applied to the 
design of an elbow for the same conditions as example IV of Part I. 
The design is for an accelerating elbow with no local decelerations of 
the prescribed velocities along the channel walls and with linearized 
compressible flow. 

Prescribed velocity distribution. - The prescribed velocity dis- 
tribution along the channel walls is given by q^ downstream of the 
elbow and by Q as a function of s along the elbow walls. The down- 
stream velocity q^ is 0.80176. Along the inner wall (with smaller 
radii) of the elbow the arbitrarily prescribed velocity Q as a function 
of arc length s is given by 
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Q = 0.5 (s < 0) 

1  s2  s3 

Q = 2 + T 27  (0<s'<3.0) 

Q = 1.0 (s > 3.0) 

This velocity distribution is plotted in figure 2. 

From equations (l), (2j), (3c), and (3d) 

(19) 

' a.      it Md       ■ 
d$=2-ÄPQdS 

which together with equation (19) integrates to give 

$ = 2 "Sp (°-5 S) (B < 0) 
^ 

* = s «
k2(ld /s 

!-SP t + is.-roj   <** •**•<» 

.  rt 
k2^d , _ __. » $ = 2^p (-°-75+s) (s > 3.0) 

(20) 

y 

where from equations (2h), (2i), and (2k) the constant k2 is equal to 
1.36332 and from equations (2e) to (2k) the constant Ai|rf is equal to 
0.73782. From equations (1), (2j), (6c), (19), and (20) the variation 
in log„ V with $ was obtained and is plotted in figure 3. 

The distribution of velocity as a function of arc length is the 
same for both channel walls, but, as indicated in figure 3, the dis- 
tribution on the outer wall (larger radii in xy-plane) is shifted in the 

positive $-direction an amount equal to — n    relative to the distri- 
o 

bution on the inner wall. Thus, a velocity difference exists on the two 
walls at equal values of $ in the interval 0< $ < 3.333«, as shown 
in figure 3. The greater this difference in velocity Or the greater the 
range in $ over which velocity differences exist, the greater is the 
elbow turning angle. For the prescribed velocity distribution given in 
figures 2 and 3 the elbow turning angle given by equation (E5) is 
-104.08°. 
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Results. - The elbow design resulting from the prescribed, velocities 
given in figures 2 and 3 is plotted in figure 4. As indicated in 
table II the contour of this elbow is very nearly the same as that 
obtained by relaxation methods for linearized compressible flow with the 
same prescribed conditions (example IV, Part I). 

The solution obtained by Green's function (Part II) required one 
experienced computer 3 days whereas the solution by relaxation methods 
(Part I) required about 10 days. The relaxation solutions provide 
additional information, such as the distribution of velocity across the 
channel, but for the most part this additional information is of second- 
ary importance and the design of channels by Green's function is more 
rapid and therefore to be preferred over the design by relaxation 
methods. 

SUMMARY OF RESULTS 

Methods of solution by Green's function are developed for the design 
of two-dimensional unbranched channels with prescribed velocities as a 
function of arc length along the channel walls. The methods apply to 
incompressible and linearized-compressible, nonviscous irrotational flow. 
One numerical example is presented for an accelerating elbow with 
linearized compressible flow. The elbow shape obtained from the solution 
by Green's function is the same as that obtained from a solution by 
relaxation methods for the same prescribed conditions. The time required 
for the calculations was considerably less for the solution by Green's 
function. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, September 6, 1951 
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APEEHDIX A 

SYMBOLS 

The following symbols are used in this report: 

B-jjB^'' * * * 

c constant, equation (B3) , 

G Green's function of the second kind, equations (B2) 

and (10) 

I integral (<x or ß) 

k-, coefficient, equation (2g) 

k coefficient, equation (2k)" 

I length of closed boundary 

n distance in xy-plane measured normal to direction of flow 
(expressed as ratio of characteristic length equal to 
channel width downstream at infinity) 

Q velocity (expressed as ratio of characteristic velocity 
equal to constant channel velocity downstream at 
infinity) 

q velocity (expressed as ratio of stagnation speed of 
sound) 

q* velocity used in linearized compressible flow and related 
to q by equation (2j) 

r distance from any point in ^f-plane to point ($0,¥0) 
at which logarithmic singularity exists 

s distance in xy-plane measured along direction of flow 
(expressed as ratio of characteristic length equal to 
channel width downstream at infinity) 

V velocity parameter defined by equations (6b) and (6c) for 
incompressible and linearized compressible flow, 
respectively 
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' | . 

w>wl>w2      complex functions defined by equations (C3), (cla), and 
(C2a), respectively 

x,y Cartesian coordinates in physical plane (expressed as 
ratios of characteristic length equal to channel width 
downstream at infinity) 

z complex coordinate, equation (Clb) 

z conjugate of z 

a integral, equation (13d) 

ß integral, equation (l3e) 

T ratio of specific heats 

A finite increment 

0 flow direction in physical xy-plane (measured in counter- 
clockwise direction from positive x-axis) 

A© channel turning angle, equation (El) 

p density (expressed as ratio of stagnation density) 

P* density used in linearized compressible flow and related 
to p by equation (2f) 

$ velocity potential used as Cartesian, coordinate in trans- 
formed $¥-plane and related to cp or cp* by equa- 
tion (3a) or (3c), respectively 

cp and cp     velocity potential for incompressible and linearized 
compressible flow, respectively, equations (3b) and (3d) 

¥ stream function used as Cartesian coordinate in trans- 
formed $¥-plane and related to \|r or i|r* by equa- 
tion (2a) or (2c), respectively 

i|r and i|r*    stream function for incompressible and linearized com- 
pressible flow, respectively, equations (2b) and (2d) 

A^* boundary value of f*}  for linearized compressible flow, 
along left channel wall when faced in the direction of 
flow, equation (2e) 
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cu any harmonic function in §?-plane . -    „ 

Subscripts:. 
CO 

a i) quantities related to any two selected values of velocity       w 
' (qa and qb, respectively) for which densities given o 

"by equations (2h) and (2i) are equal to densities given 
"by equations (2f) and (2g) 

d conditions downstream at infinity 

o point in $¥-plane at which 0 is determined 

u    ( conditions -upstream' at infinity 

($_$) point at ($-$0)  on either channel wall boundary 

($-$ ) + A$   point at  [($-$0) + A$] on elther channel wall boundary 

0 boundary along which Uf equals 0 

— boundary along which f equals -^ 
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APPENDIX B 

INTEGRAL EQUATION FOR 0($Q,¥Q) 

If the distribution of the angle 0($,W)  in the transformed 
$¥-plane is harmonic, that is, satisfies equation (8) within and on the 

channel walls (¥ equals 0 and -x),    then from Green's theorem and 

the theorem of mean value it can be shown that the value of 0 at a 
point ($0,?0) within (or on) the channel walls is given by (refer- 

ence 3, p. 204, for example) 

0(v*o) = k 2jt 
Q  ÖG ^ _ be  , , . 

- 0 ^— + G ^—  d* 
aw     aw' 

'A 

L_" _oo - CD 2 

(Bl) 

where the two integrals on the right side of equation (Bl) represent 
the line integral around the channel walls in the counterclockwise 

direction with the signs adjusted so that — represents the inner 
of 

normal to the path of integration. 

The function G($,f)  in equation (Bl) is of the form (refer- 
ence 3, p. 204). 

G($,F) = loge i + ü>(<M0 (B2) 

where r is the distance from any point ($,?) to the point ($0,Tjr0) 

and where ü)(<I>,F)  is an arbitrary function that is harmonic within and 
on the channel walls.  (Thus from equation (B2), G($,?)  is harmonic 
within and on the channel walls except at the point (^cu^o) where a 
logarithmic singularity exists.) Because the harmonic function a>(§,'$ 
is arbitrary, the function G($,iir)  can be selected so that along the 

channel wall boundaries (y equals 0 and ^-) — is a constant c 

given by the following equation (obtained from notes presented by 
Tamarkin and Feller in the 1941 Summer Session for Advanced Instruc- 
tion and Research in Mechanics at Brown Univ.): 

c = 2* (B3) 

where I    is the length of the path along which the line integral is 
taken. For the path under consideration I    is infinite and therefore 
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G($,¥)  can tie selected so that 2§ is zero along the channel walls. 

A function with this property is called a Green's function of the sec- 
ond kind. Equation (Bl) becomes 

IX 

o 

e(*o>v0) = jn dv. 
Gö? d<& 

or, combined with equation (6a) 

e(*0^0) -■ T: («^H^4 d$ 

a loge V 

0$ 

(9) 

is known from the prescribed veloc- Along the channel walls 

ity distribution so that, after the proper Green1s function G has 
been determined (appendix C), equation (9) determines the value of 0 
at any point ($0,¥0). The value of 0($o,yo)  given by equation (9) 

can be adjusted by an arbitrary constant of integration to give a spec- 
cified value of 0 at one point in the flow field. 
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APPENDIX C 

GREEN'S FUNCTION OF SECOND KIND 

From appendix B Green's function of the second kind G satisfies 
the condition 

ÖG - 0 

along the channel walls, which are straight and parallel "boundaries 

(■y equals 0 and •%) extending to ±.» in the $-direction, and 

satisfies the equation 

d2G  d2G _ 

everywhere in the channel except at the point .(^O^Q) where G has 

a logarithmic pole. For these conditions the Green's function G can 
he obtained by analogy from the velocity potential for incompressible 
flow into a point sink at ($0,ilf0) between straight parallel bound- 

aries at f equal to 0 and £. The logarithmic pole for G at 
ÖG 

($0/3r0) corresponds to the point sink and the condition ~ =«0 at 

the boundaries corresponds to zero velocity, that is, no flow normal 
to the boundaries. 

i The velocity potential for fluid flow with the boundary conditions 
just described is obtained from two infinite series of point sinks with 
the sinks of each series spaced si    distance apart in the ^-direction 
and the two series arranged by the method of images in such a manner 

that no flow crosses the boundaries, that is -r— = 0.    This arrangement 
of point sinks is shown in figure 5. 

The complex function Wj_ for the first infinite series of point 
sinks is given by (reference 4, p. 112, for example) 

w1 = -logg sinh (z-z0) (Cla) 

where 

z a :$ + iHf (Clb) 
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The complex function w2 for the second infinite series of point sinks 
(mirror image of the first series in order to prevent flow across the 

"boundaries ¥ equals 0 and ^-) is given by * 

w2 = -log -sinn (z-z0) (C2a) 

where 

z = 9  - i¥ (C2b) 

The complex function w for the combined flow becomes from equa- 
tions (Cla) to (C2b) 

v = v1  + w2 = -log sinh [($-$0) + i (¥-¥<, j] - 

loge sinh [($-<3>0) + i (¥+¥Q)] (C3) 

The Green's function of the second kind G corresponds to the 
velocity potential for the incompressible flow and is therefore given by 
the real part of equation (C3) 

G = - | loge [cosh
2 '(*-$0) " cos2 0"o)] [cosh2 ($- %)   - cos2 (¥+¥0)] 

(04) 

jf But along the channel walls ¥ is equal to 0 or -~     so that 

cos2 (¥+¥Q) = cos
2 (¥-¥Q) 

and equation (C4) becomes 

G0 or * = -loge [cosh
2 ($-$o) " cos2 ("o)J (10) 

2 .        ■ .••■■■.'■■ 

Equation (10) gives the Green's function of the second kind along the 
channel walls (straight parallel lines of constant ¥ equal to 0, and 

— and extending to ±t» in the ^-direction). 

w 
CD o 
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APPENDIX D 

EVALUATION OF a AND ß 

Several techniques, depending on the magnitude of the upper limit 
|($-$0)| ,  were used to evaluate the integrals a and ß given by- 
equations (13d) and (l3e). Each integral is treated separately in this 
appendix and the values of ($-$o)  for the upper limit |($-$o)j are 

considered positive. For negative values of ($-$0)  the magnitudes 

of I (that is, of a or ß) are equal for corresponding values of 
|($-$0)| hut opposite in sign. As a result the values of AI have the 
same sign. 

Integral a 

Small and medium values of ($-$o)• - For small and medium values 
of the upper limit of integration ($-$0)  in equation (13d),  that is, 
for 0 < ($-$0) < 60 rt/24, the integral a is evaluated by Simpson's 

one-third rule using increments of (^-^Q). equal to A/48. 

Large values of ($-$0). - For large values of ($-$0)  that is 

for (<$>-$) > 60 rt/24, the integrand in equation (13d) becomes 

loge cosh (*-*0) « ($"%) - loge 2 (Dl) 

so that equation (13d) becomes 

"N60«/24 
loge cosh (*-*0) d(*-*0) + 

($_ * ) 

[($-*o) - loge 2] d($-$Q) 
60rt/24 

r($_$ )2 
« 25.809782 + I  g2 0.693147 ($-$0) - 25.398552 

~  0.411230 - 0.693147 (*-*) + | (*-* )2 (D2) 
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Equation (D2) gives values of a for values of  ($-$0) equal to or 
greater than 60ff/24. Values of the integral a are tabulated in table I 
for a range of |($-$0)| between 0 and 100rt/24 in increments of A/24. 

For negative values of ($-$0) the sign of a is negative. 

Integral ß ; 

Small values of ($-$0) . - For .($-$0)  equal to zero the integrand 

of equation (13e) becomes minus infinity so that Simpson's one-third 
rule cannot be used to evaluate ß in this region of ($-$0)> as was 
done for a. However,  equation (l3e) integrates by parts to give 

loge sinh (<£-S>0) d($-$0) 
'0 , . : 

= ($-$9) loge sinh ($-$0) - 

>($.$o) 

($-$o) ctnh (*-*0) d(*-*0) (D3) 

where the integrand ($-$0) ctnh ($-$0) on the right side of equa- 
tion (D3) can be expanded in the following series form: 

22B. ($-$J
2
  2±B, ($-$J4  26B. ($-<£ )6 

(*-*0) ctnh (*-»0) = 1 +     2,     -   5       +   %,     " 

28B7 ($-$0)
8  210B9 ($-$o)

10 212B1±  ($-$o)1Z 

 8i~ + löi        ~i2~i    " + • • •   ^m) 

where Bj_, VB3, and so forth, are called Bernoulli's numbers (refer- 

ence 5, p. 90, for example).  From equations (D3) and (D4) 

CD o 
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■(i-*)3    ($-s>0)
5   2($-$0)

7 

ß = e&-*0) loge sinh ($-$0) - (*-»0)- - —g— + —ggg— - -6615- + 

($_$)9  2(*-* )n  1382 ($-$)13 

42,525  " 1,029,105 + 8,300,667,375  ' " *  '       ^ ' 

Equation (D5) was used to obtain ß as a function of ($-$) for 

0 < (4-* ) < 8it/24. 

Mädium. values of ($-$Q). - For medium values of the upper limit 

of integration ($-$0)  in equation (l3e), that is, for 8«/24 < ($-$ ) 
< 60it/24, the integral ß is evaluated by Simpson's one-third rule as 
was done for a. 

Large values of ($-$ ). - For large values of ($-$ ), that is, 

for ($-$0) > 60rt/24, the integrand in equation (l3e) becomes 

loge sinh (4-$0) » (*-*0) - loge 2 (D6) 

so that equation (l3e) becomes 

p60jt/24 

ß « I      loge sinh ($-$o) d($-$) + 

[(*-'«b) - loge 2]d(4-*0) 
60rt/24 t 

« 24.576082 + I ^ 0.693147 ($-4>0) - 25.398552J 

*- 0.822470 - 0.693147 (*-*Q) +| (®-%)2 (D7) 

Equation (D7) gives values of ,ß for values of ($-$ )  equal to or 

greater than 60jf/24. Values of the integral ß are tabulated in table I 
for a range of |($-$0)| between 0 and 100n/24 in increments of n/24. 
For negative values of ($-$0) the sign of ß changes. 
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APPENDIX E 

CHANNEL TURNING ANGLE 

If the prescribed velocity distribution along one channel wall 
differs from the distribution along the other wall, then in general the 
channel-deflects an amount A0, which, is the difference in flow direc- 
tion far •downstream and far upstream of the region in which the pre- 
scribed velocity distribution varies. Thus, 

o 
er 
c 

AS = e d - öu (El) 

For large values of  |($-<I>0)| such as occur far upstream and far 

downstream of the region in which the prescribed velocity varies along 
the channel walls 

cosh2 (*-*0) »cos
2 (¥-¥0) 

so that from equation (10) 

G0 = Grt = 2 

2 

|<$-$0)| - loge 2 (E2) 

Far upstream $n<$ so that 

!(*-*„) I = (»-t) 

and because V is harmonic 

loo 

^-oo 

'd loge V\        fi loge ^ 
^      5$     ')* ' ['     %$     Jo d<& = 0 

JO that equation (E2)   substituted in equation (9)  gives 

00 

9u = it 
$ 

5 loge V 
W 

'—00 

5 loge V 
oT-" d$ (E3) 
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Likewise, far downstream $0>$ so that 

l(*-*0)l = - (*-*0) 

and equation (E2) substituted in equation (9) gives 

e"d - 4   * 
'—Co 

'd loge V^ 
5$—> 

'd loge 
o^~ 

d$ (E4) 

From equations (El), (E3), and (E4) 

A0 = ±   \       $ 'd loge V
N 

—5F 
'—oo 

2 

'd loge ^ 

5$  > d$ (E5) 

Equation (E5) determines the channel turning angle A9. 
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TABLE I - TABULATED VALUES OF THE INTEGRALS    a   AND    ß    FOE A RANGE OF   |( »-«b )l 

Computational methods given in appendix D.]     ^-^ NACA 

K*-*0)l Jl1 a. 
AI = Aa 

ß(l) 
■ AI = Aß 

A-jCL 

(A*=it/24) (A4>=2«/24) 

A,ß 

(A$=it/24) 

Agß 

(A*=2it/24) 

0 0 0 
0.000373 

0.002970 
-0.396937 

-0.611660 l(it/24) 0.000373 -0.396937 

.002597 -.214723 
2 (it/24) .002970 -.611660 

.006972 
.020331 

-.144746 
-.242791 3(it/24) .009942 -.756406 

.013359 -.098045 
4(it/24) .023301 -.854451 

.021574 
.052976 

-.062035 
-.094079 5(it/24) .044875 -.916486 

.031402 -.032044 
6(fl/24) .076277 -.948530 

.042620 
.097632 

-.005816^ 
.012092 7(it/24) .118397 -.954346 

.055012 .017908 
8(it/24) .173909 -.936438 

.068374 
.150903 

.039896 
.100542 9(it/24) .242283 -.896542 

.082529 .060646 
10(it/24) .324812 -.835896 

.097324 
.209951 

.080497 
.180181 ll(it/24) .422136 -.755399 

.112627 .099684 
12(it/24) .534763 -.655715 

.128335 
.272697 

.118377 
.255075 13(it/24) .663098 -.537338 

.144362 .136698 
14(H/24) .807460 -.400640 

.160636 
.337741 

.154739 
.327305 15(it/24) .968096 -.245901 

.177105 .172566 
16(it/24) 1.145201 -.073335 

.193725 
.404188 

.190232 
.398006 17(il/24) 1.338926 .116897 

.210463 .207774 
18(it/24) 1.549389 .324671 

.227290 
.471478 

.225221 
.467817 19(it/24) 1.776679 .549892 

.244188 .242596 
20(i/24) 2.020867 .792488 

.261141 
.539276 

..259915 
.537106 21(it/24) 2.282008 1.052403 

.278135 .277191 
22(it/24) 2.560143 1.329594 

.295161 
.607375 

.294435 
.606089 23(x/24) 2.855304 1.624029 

.312212 .311654 
24«; it/24) 3.167516 1.935683 

.329283 
.675652 

.328853 
.674890 25( it/24) 3.496799 2.264536 

.346369 .346037 
26(it/24) 3.843168 2.610573 

.363465 
.744035 

.363210 
.743585 27(it/24) 4.206633 2.973783 

.380570 .380375 
28(it/24) '4.587203 3.354158 

.397682 
.812482 

.397531 
.812215 29(jt/24) 4.984885 3.751689 

.414800 .414684 
30 (it/24) , 5.399685 4.166373 

.431922 
.880967 

.431832 
.880808 31( it/24) 5.831607 4.598205 

.449045 .448976 
. 32(it/24) 6.280652 5.047181 

.466173 
.949474 

.466120 .949380 33( it/24) 6.746825 5.513301 

.483301 .483260 ' 
34(it/24) 7.230126 5.996561 

.500431 
1.017993 

.500400 
1.017938 35(it/24) 7.730557 6.496961 

.517562 .517538 
36 (it/24) 8.248119 7.014499 

.534694 
1.086521 

.534676 
1.086488 37 (it/24) 8.782813 7.549175 

.551827 .551812 
38(it/24) 9.334640 8.100987 

.568960 
1.155053 

.568949 
1.155034 39(it/24) 9.903600 8.669936 

.586093 .586085 
40(it/24) 10.489693 9.256021 

.603227 
1.223588 

.603220 
1.223576 41(it/24) 11.092920 9.859241 

.620361 .620356 
42 (it/24) 11.713281 10.479597 

.637496 
1.292125 

.637492 
1.292118 43(it/24) 12.350777 11.117089 

.654629 .654626 
44(it/24) 13.005406 11.771715 

.671764 
1.360662 

.671762 
1.360658 45(it/24) 13.677170 12.443477 

.688898 .688896 
46(it/24) 14.366068 13.132373 

.706033 
1.429200 

.706032 
' 1.429198 47(*/24) 15.072101 13.838405 

.723167 .723166 
48(*/24) 15.795268 14.561571 

.740303 
1.497739 

.740302 
1.497738 49(it/24) 16.535571 15.301873 

.757436 .757436 

CO 
en 
CO 
o 

' 'For negative.values of ($-$0) the signs of a and ß change, out the signs 
of Aa and Aß remain unchanged. 

*• - ■""■ - ^^H 
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TABLE I  -  TABULATED VALUES OF THE INTEGRALS    a   AMD    ß    FOR A RANGE OF   |(4-*0)|   - Concluded 

[Computational methods given in appendix D.]] ^v NACA~ 

o 
en 
to 

|(»-*o'l >> 
AI = Aa 

ß(D 
AI = Aß 

A^a 

(A*=it/24) (A*=2it/24) 

Ajß 

(A*=it/24) (A*=2it/24) 

50(fl/24) 17.293007 16.059309 
.774572 1.566278 

.774571 
1.566276 Sl(jt/24) 18.067579 16.833880 

.791706 .791705 
52(it/24) 18.859285 17.625585 

.808840 
1.634816 

.808841 
1.634816 53( it/24) 19.668125 18.434426 

.825976 .825975 
54( it/24) 20.494101 19.260401 

.843110 
1.703355 

.843110 
1.703354 55(it/24) 21.337211 20.103511 

.860245 .860244 
56 (it/24) 22.197456 20.963755 

.877379 
1.771893 

.877380 
.     1.771894 S7(it/24) 21.841135 

.894514 .894514 
58 (it/24) 23.969349 22.735649 

.911649 
1.840433 

.911649 
1.840433 59(it/24) 24.880998 23.647298 

.928784 .928784 
60(it/24) 25.809782 24.576082 

61( it/24) 26:755694 
.945912 

1.908968 25.521994 
.945912 

1.908968 
,963056 .963056 

62(it/24) 27.718750 26.485050 
.980190 

.1.977507 
.980190 1.977507 63( it/24) 28.698940 27.465240 

.997317 .997317 
64(it/24) 29.696257 28.462557 

1.014460 2.046044 1.014460 2.046044 65(it/24) 30.710717 29.477017 
1.031594 1.031594 

66(it/24) 31.742311 30.508611 
1.048722 

2.114585 
1.048722 

2.114585 67(it/24) 32.791033 31.557333 

6S(it/24) 33.856896 
1.065863 

32.623196 
1.065863 

1.082999 
2.183123 

1.082999 
2.183123 69(it/24) 34.939895 33.706195 

1.100134 1.100134 
70(it/24) 36.040029 34.806329 

1.117260 
2.251663 

1.117260 
2.251663 71(it/24) 35.923589 

1.134403 1.134403 
72(it/24) 38.291692 37.057992 

1.151538 
2.320201 

1.151538 
2.320201 73( it/24) 39.443230 38.209530 

1.168663 1.168663 
74(it/24) 40.611893 39.378193 

1.185808 
2.388740 

1.185808 
2.368740 75(it/24) 41.797701 40.564001 

1.202942 1.202942 
76(it/24) 43.000643 41.766943 

1.220067 2.457279 
1.220067 

2.457279 77 (it/24) 44.220710 42.987010 
1.237212 1.237212 

78(it/24) 45.457922 44.224222 
1.254347 

2.525818 
1.254347 

2.525818 79(it/24) 46.712269 45.478569 
1.271481 1.271481 

80(it/24) 47.983750 46.750050 
1.288606 

2.594357 
1.288606 

2.594357 81(it/24) 49.272356 48.038656 
1.305751 1.305751 

82(it/24) 50.578107 49.344407. 
1.322885 

2.662895 
1.322885 

2.662895 83(n/24) 51.900992 50.667292 
1.340010 1.340010 

84(*/24) 53.241002 52.007302 
1.357156 

2.731435 
1.357156 

2.731435 85(B/24) 54.598158 53.364458 
1.374289 1.374289 

86(it/24) 55.972447 54.738747 
1.391414 

2.799974 
1.391414 

2.799973 87(it/24) 57.363861 56.130161 
1.408560 1.408560 

88(it/24) 58.772421 57.538720 
1.425694 

2.868512 
1.425694 

2.868513 89(it/24) 60.198115 58.964415 
1.442818 1.442818 

90(it/24) 61.640933 60.407233 
1.459964 

2.937052 
1.459964 

2.937052   . 91(it/24) 63.100897 61.867197 
1.477098 1.477098 

92(it/24) 64.577995 63.344295 
1.494233 

3.005590 
1.494233 

3.005590 93( it/24) 66.072228 64.838528 
1.511357 1.511357 

94( it/24) 67.583585 66.349885 
1.528503 3.074130 

1.528503 
3.074130 95(it/24) 69.112088 67.878388 

1.545637 1.545637 
96(it/24) 70.657725 69.424025 

1.562761 3.142668 
1.562761 

3.142668 97(it/24) 72.220486 70.986786 
1.579907 1.579907 

98(it/24) 73.800393 72.566693 
1.597042 

3.211206 
1.597042 

3.211206 99(it/24) 75.397435 74.163735 
1.614164 1.614164 

100(it/24)(2> 77.011599 75.777899 

For negative values of ($-$0) the signs of a and 
of Aa and Aß remain unchanged. 

(2) 
For values of |{*-*0)| >100(«/24) use equation (D2), 
for ß. 

ß change, hut the signs 

for a and equation (D7) 
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TABLE II - COMPARISON OF ELBOW DESIGNS OBTAINED FROM SOLUTIONS BY RELAXATION METHODS AND BT GREEN'S FUNCTION 

[Linearized compressible flow; prescribed velocity distribution given in figs. 2 and 3f] 

/ 
\ 
If   = 0 If   = it/2 

(Inner wa LI) (Outer wall) ' 
Solution by Solution by Solution °y Solution by 

* relaxation methods Green's function relaxation methods Green's function 

Q 1 
(Part 1 ) (Part II) 

0. 1 
(Part I) (Part II ) 

X y e X y e X y e X y 6 
(deg)' (deg) (deg) (deg) 

-22(it/24) 0.5000 0.4009 -2.466 -0.769 0 -2.466 -0.769 0 0.5000 0.4009 -2.466 .770 0 -2.466 .770 0 
-20(it/24) .5000 .4009 -2.241 -.769 .01 -2.241 -.769 .01 .5000 .4009 -2.241 .770 -.01 -2.241 .770 -.01 
-18(it/24) .5000 .4009 -2.016 -.769 .01 -2.016 -.769 .01 .5000 .4009 -2.016 .770 -.01 -2.016 .770 -.01 
-16(it/24) .5000 .4009 -1.791 -.769 .02 -1.791 -.769 .02 .5000 .4009 -1.791 .770 -.02 -1.791 .770 -.02' 
-14(it/24) .5000 .4009 -1.566 -.768 .03 -1.566 -.768 .03 .5000. .4009 -1.566 .770 -.03 -i.566 .770 -.03 
-12 (it/24) .5000 .4009 -1.341 -.768 .05 -1.341 -.768 .05 .5000 .4009 -1.341 .769 -.05 -1.341 .770 -.05 
-10(it/24) .5000 .4009 -1.116 -.768 .08 -1.116 -.768 .08 .5000 .4009 -1.116 .769 -.08 -1.116 .769 -.08 
-8(it/24) .5000 .4009 -.891 ■   -.768 .14 -.891 -.768 .14 .5000 .4009 -.891 .769 -.13 -.891 .769 -.13 
-6 (it/24) .5000 .4009 -.666 -.767 .24 -.666 -.767 .24 .5000 .4009 -.666 .768 -.21 -.666 .768 -.22 
-4( it/24) .5000 .4009 -.441 -.766 .40 -.441 -.766 .41 .5000 .4009 -.441 .767 -.35 -.441 .767 -.36 
-2(it/24) .5000 .4009 -.216 -.763 .70 -.216 -.763 .74 .5000 .4009 -.216 .765 -.56 -.216 .765 -.59 
0 .5000 .4009 .008 -.760 1.31 .010 -.759 1.52 .5000 .4009 .009 .763 -.92 .009 .762 -.94 
2 (it/24) .5079 .4072 .233 -.752 2.82 .233 -.751 2.76 .5000 .4009 .234 .758 -1.45 .234 .758 -1.48 

•    4(it/24) .5293 .4243 .450 -.739 3.88 .449 -.738 3.76 .5000 .4009 .459 .751 -2.22 .459 .750 -2.24 
6(it/24) .5599 .4489 .656 -.724 4.00 .656 -.724 3.89 .5000 .4009 .684 .740 -3.28 .684 .740 -3.29 
8(it/24) .5962 .4780 .851 -.712 3.17 .850 -.713 13.07 .5000 .'4009 .908 .725 -4.65 .908 .724 -4.68 

10( it/24) .6354 .5094 1.033 -.704 1.44 1.033 -.705 1.38 .5000 .4009 1.132 .703 -6.41 1.132 .702 -6.43 
12(it/24) .6754 .5415 1.205 -.703 -.98 1.205 -.704 -1.04 .5000 .4009 1.355 .674 -8.52 1.355 .673 -8.56 
14(it/24) .7149 .5732 1.366 -.710 -4.00 1.367 -.711 -4.04 .5000 .4009 1.577 .636 -11.04 1.577 .635 -11.06 
16 it/24) .7531 .6038 1.519 -.725 -7.48 1.519 -.727 -7.51 .5000 .4009 1.797 .587 -13.91 1.797 .586 -13.94 
18 it/24) .7894 .6329 1.663' -.749 -11.35 1.663 -.750 -11.37 .5000 .4009 2.013 .527 -17.13 2.013 .526 -17.16 
20 K/24) .8235 .6602 1.798 -.781 -15.52 . 1.799 -.783 -15.54 .5000 .4009 2.226 .455 -20.67 2.226 .453 -20.69 
22 it/24) .8550 .6855 1.926 -.822 -19.96 1.926 -.823 -19.98 .5000 .4009 2.434 .368 -24.49 2.434 .367 -24.52 
24 it/24) .8838 .7086 2.046 -.871 -24.62 2.046 -.871 -24.63 .5000 .4009 2.635 .268 -28.58 2.635 .266 -28.59 
26 it/24) .9097 .7293 2.157 -.928 -29.46 2.158 -.929 -29.47 .5000 .4009 2.829 .153 -32.89 2.828 .152 -32.90 
28 it/24) .9326 .7477 2.261 -.993 -34.45 2.261 -.994 -34.46 .5000 .4009 3.013 .024 -37.40 3.012 .022 -37.41 
30 it/24) .9524 .7636 2.356 -1.064 -39.56 2.356 -1.066 -39.57 .5000 .4009 3.186 -.120 -42.08 3.185 -.122 -42.09 
32 it/24) .9690 .7769 2.443 -1.143 -44.76 2.443 -1.144 -44.77 .5000 .4009 3.346 -.278 -46.93 3.346 -.279 -46.94 
34 it/24) .9822 .7875 2.521 -1.228 -50.02 2.521 -1.229 -50.01 .5000 .4009 3.492 -.449 -51.93 3.492 -.450 -51.94 
36 it/24) .9919 .7953 2.590 -1.318 -55.27 2.590 -1.320 -55.27 .5000 .4009 3:623 -.632 -57.08 3.623 -.633 -57.10 
38 it/24) .9979 .8001 2.650 -1.414 -60.49 ■ 2.650 -1.415 -60.47 .5000 .4009 3.,736 -.826 -62.44 3.736 -.828 -62.49 
40 it/24) 1.0000 .8018 2.701 -1.514 -65.55 2.701 -1.516 -65.51 .5000 .4009 3.830 -1.030 -68.16 3.829 -1.034 -68.37 
42 it/24) 1.0000 .8018 2.743 -1.619 -70.32 2.744 -1.620 -70.29 .5079 .4072 3.901 -1.242 -74.80 3.901 -1.244 -74.75 
44 it/24) 1.0000 .8018 2.777 -1.726 -74.81 2.777 -1.727 -74.78 .5293 .4243 3.947 -1.455 -81.03 3.945 -1.456 -80.91 
46 it/24) 1.0000 .8018 2.803 -1.836 -78.97 2.803 -1.837 -78.96 .5599 .4489 3.969 -1.661 -86.33 3.969 -1.662 -86.23 
48 it/24) 1.0000 .8018 2.820 -1.947 -82.82 2.821 -1.948 -82.80 .5962 .4780 3.974 -1.856 -90.69 3.975 -1.856 -90.59 
50 ,/24) 1.0000 .8018 2.831 -2.059 -86.28 2.831 -2.059 -86.26 .6354 .5094 3.966 -2.038 -94.16 3.967 -2.040 -94.09 
52 it/24) 1.0000 .8018 2.835 -2.171 -89.37 2.836 -2.172 -89.34 .6754 .5415 3.950 -2.209 -96.93 3.951 -2.210 -9.6.88 
54 it/24) 1.0000 .8018 2.834 -2.283 -92.07 2.834 -2.285 -92.04 .7149 .5732 ' 3.927 -2.369 '-99.11 3.928 -2.371 -99.07 
56 it/24) 1.0000 .8018 2.827 -2.396 -94.40 2.828 -2.397 -94.37 .7531 .6038 3.900 -2.520 -100.83 3.901 -2.522 -100.80 
58 it/24) 1.0000 .8018 2.817 -2.508 -96.39 2.817 -2.509 -96.36 .7894 .6329 3.871 -2.663 -102.17 3.872 -2.665 -102.14 
60' it/24) 1.0000 .8018 2.803 -2.619 -98.05 2.803 -2.620 -98.03 .8235 .6602 3.841 -2.799 -103.19 3.842 -2.801 -103.17 
621 it/24) 1.0000 .8018 2.786 -2.731 -99.44 2.786 -2.732 -99.42 .8550 .6855 3.809 -2.929 -103.95 3.810 -2.931 -103.94 
641 it/24) 1.0000 .8018 2.766 -2.841 -100.56 2.767 -2.842 -100.55 .8838 .7086 3.777 -3.055 -104.49 3.778 -3.056 -104.48 
661 it/24) 1.0000 .8018 2.744 -2.952 -101.47 2.745 -2.953 -101.45 .9097 .7293 3.746 -3.176 -104.84 3.746 -3.178 -104.83 
681 it/24) 1.0000 .8018 2.721 -3.062 -102.18 2.722 -3.063 -102.17 .9326 .7477 3.714 -3.294 -105.03 3.715 -3.296 -105.03 
701 it/24) 1.0000 .8018 2.697 -3.172 -102.73 2.698 -3.173 -102.72 .9524 .7636 3.683 -3.409 -105.10 3.684 -3.411 -105.09 
721 «/24) 1.0000 .8018 2.672 -3.281 -103.14 2.672 -3.283 -103.14 .9690 .7769 3.653 -3.522 -105.05 3.654 -3.524 -105.04 
741 it/24) 1.0000 .8018 2.646 -3.391 -103.45 2.647 -3.392 -103.44 .9822 .7875 3.623 -3.633 -104.91 3.624 -3.635 -104.91 
761 */24) 1.0000 .8018 2.620 -3.500 -103.66 2.620 -3.501 -103.66 .9919 .'7953 3.594 -3.744 -104.71 3.595 -3.746 -104.72 
781 it/24) 1.0000 .8018 2.593 -3.609 -103.81 2.594 -3.611 -103.79 .9979 .8001 3.565 -3.853 -104.49 3.566 -3.855 -104.49 
80 ( it/24) 1.0000 .8018 2.566 -3.719 -103.90 2.567 -3.720 -103.90 1.0000 .8018 3.537 -3.962 -104.28 3.538 -3.964 -104.30 
82 ( */24) 1.0000 .8018 2.539 -3.828 -103.97 2.540 -3.829 -103.97 1.0000 .8018 3.510 -4.071 -104.18 3.510 -4.073 -104.19 
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Figure 4. - Elbow design for prescribed velocity along channel walls given In figures 2 and 3. 
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